Spectroscopic Characterization of Aqueous and Colloidal Am(III)-CO3 Complexes for Monitoring Species Evolution -Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) (2024)

Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)(방사성폐기물학회지)

  • Volume 20Issue 4
  • /
  • Pages.371-382
  • /
  • 2022
  • /
  • 1738-1894(pISSN)
  • /
  • 2288-5471(eISSN)

Korean Radioactive Waste Society(한국방사성폐기물학회)

Spectroscopic Characterization of Aqueous and Colloidal Am(III)-CO3 Complexes for Monitoring Species Evolution -Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) (1)

Spectroscopic Characterization of Aqueous and Colloidal Am(III)-CO3 Complexes for Monitoring Species Evolution -Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) (2)

DOI QR Code

  • Received : 2022.07.25
  • Accepted : 2022.09.27
  • Published : 2022.12.30
Download PDF
〈 Previous

Next 〉

Abstract

Carbonates are inorganic ligands that are abundant in natural groundwater. They strongly influence radionuclide mobility by forming strong complexes, thereby increasing solubility and reducing soil absorption rates. We characterized the spectroscopic properties of Am(III)-carbonate species using UV-Vis absorption and time-resolved laser-induced fluorescence spectroscopy. The deconvoluted absorption spectra of aqueous Am(CO3)2- and Am(CO3)33- species were identified at red-shifted positions with lower molar absorption coefficients compared to the absorption spectrum of aqua Am3+. The luminescence spectrum of Am(CO3)33- was red-shifted from 688 nm for Am3+ to 695 nm with enhanced intensity and an extended lifetime. Colloidal Am(III)-carbonate compounds exhibited absorption at approximately 506 nm but had non-luminescent properties. Slow formation of colloidal particles was monitored based on the absorption spectral changes over the sample aging time. The experimental results showed that the solubility of Am(III) in carbonate solutions was higher than the predicted values from the thermodynamic constants in OECD-NEA reviews. These results emphasize the importance of kinetic parameters as well as thermodynamic constants to predict radionuclide migration. The identified spectroscopic properties of Am(III)-carbonate species enable monitoring time-dependent species evolution in addition to determining the thermodynamics of Am(III) in carbonate systems.

Keywords

  • Americium;
  • Carbonate;
  • Radionuclide migration;
  • Spectroscopy;
  • Thermodynamics;
  • Kinetics

    Acknowledgement

    This research was supported by the Nuclear Research and Development Program of the National Research Foundation of Korea (Nos. 2021M2E1A1085202 and 2022M2D2A1A02063990).

    References

    1. J.I. Kim, "Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal", Nucl. Eng. Technol., 38, 459-482 (2006).
    2. I. Grenthe, X. Gaona, A.V. Plyasunov, L. Rao, W.H. Runde, B. Grambow, R.J.M. Konings, A.L. Smith, and E.E. Moore. Chemical Thermodynamics Vol. 14: Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium, OECD Nuclear Energy Agency Report (2020).
    3. Z. Wang, J.M. Zachara, W. Yantasee, P.L. Gassman, C. Liu, and A.G. Joly, "Cryogenic Laser Induced Fluorescence Characterization of U(VI) in Hanford Vadose Zone Pore Waters", Environ. Sci. Technol., 38(21), 5591-5597 (2004).https://doi.org/10.1021/es049512u
    4. G. Bernhard, G. Geipel, V. Brendler, and H. Nitsche, "Speciation of Uranium in Seepage Waters of a Mine Tailing Pile Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS)", Radiochim. Acta, 74(s1), 87-91 (1996).https://doi.org/10.1524/ract.1996.74.special-issue.87
    5. Y. Jo, H.R. Cho, and J.I. Yun, "Visible-NIR Absorption Spectroscopy Study of the Formation of Ternary Plutonyl(VI) Carbonate Complexes", Dalton Trans., 49(33), 11605-11612 (2020).https://doi.org/10.1039/d0dt01982h
    6. M.H. Baik, E.C. Jung, and J. Jeong, "Determination of Uranium Concentration and Speciation in Natural Granitic Groundwater Using TRLFS", J. Radioanal. Nucl. Chem., 305(2), 589-598 (2015).https://doi.org/10.1007/s10967-015-3971-2
    7. E.C. Jung, M.H. Baik, H.R. Cho, H.K. Kim, and W. Cha, "Study on the Interaction of U(VI) Species With Natural Organic Matters in KURT Groundwater", J. Nucl. Fuel Cycle Waste Technol., 15(2), 101-116 (2017).https://doi.org/10.7733/jnfcwt.2017.15.2.101
    8. J.Y. Lee and J.I. Yun, "Formation of Ternary CaUO2(CO3)32- and Ca2UO2(CO3)3(aq) Complexes Under Neutral to Weakly Alkaline Conditions", Dalton Trans., 42(27), 9862-9869 (2013).https://doi.org/10.1039/c3dt50863c
    9. Y. Jo, A. Kirishima, S. Kimuro, H.K. Kim, and J.I. Yun, "Formation of CaUO2(CO3)32- and Ca2UO2(CO3)3(aq) Complexes at Variable Temperatures (10-70℃)", Dalton Trans., 48(20), 6942-6950 (2019).https://doi.org/10.1039/c9dt01174a
    10. Z. Zheng, T.K. Tokunaga, and J. Wan, "Influence of Calcium Carbonate on U(VI) Sorption to Soils", Environ. Sci. Technol., 37(24), 5603-5608 (2003).https://doi.org/10.1021/es0304897
    11. W. Dong, W.P. Ball, C. Liu, Z. Wang, A.T. Stone, J. Bai, and J.M. Zachara, "Influence of Calcite and Dissolved Calcium on Uranium(VI) Sorption to a Hanford Subsurface Sediment", Environ. Sci. Technol., 39(20), 7949-7955 (2005).https://doi.org/10.1021/es0505088
    12. S.C. Brooks, J.K. Fredrickson, S.L. Carroll, D.W. Kennedy, J.M. Zachara, A.E. Plymale, S.D. Kelly, K.M. Kemner, and S. Fendorf, "Inhibition of Bacterial U(VI) Reduction by Calcium", Environ. Sci. Technol., 37(9), 1850-1858 (2003).https://doi.org/10.1021/es0210042
    13. R. Guillaumont, T. Fanghanel, V. Neck, J. Fuger, D. Palmer, I. Grenthe, and M.H. Rand, Chemical Thermodynamics Vol. 5: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium, Elsevier, Amsterdam (2003).
    14. R. Lundqvist, "Hydrophilic Complexes of the Actinides. I. Carbonates of Trivalent Americium and Europium", Acta Chem. Scand., A36, 741-750 (1982).https://doi.org/10.3891/acta.chem.scand.36a-0741
    15. T. Vercouter, P. Vitorge, B. Amekraz, E. Giffaut, S. Hubert, and C. Moulin, "Stabilities of the Aqueous Complexes Cm(CO3)33- and Am(CO3)33- in the Temperature Range 10-70℃", Inorg. Chem., 44(16), 5833-5843 (2005).https://doi.org/10.1021/ic050214n
    16. A.R. Felmy, D. Rai, and R.W. Fulton, "The Solubility of AmOHCO3(c) and the Aqueous Thermodynamics of the System Na+-Am3+-HCO3--CO32--OH--H2O", Radiochim. Acta, 50(4), 193-204 (1990).https://doi.org/10.1524/ract.1990.50.4.193
    17. G. Meinrath and J.I. Kim, "The Carbonate Complexation of the Am(III) Ion", Radiochim. Acta, 52-53(1), 29-34 (1991).https://doi.org/10.1524/ract.1991.5253.1.29
    18. H. Nitsche and E.M. Standifer, "Americium(lll) Carbonate Complexation in Aqueous Perchlorate Solution", Radiochim. Acta, 46(4), 185-190 (1989).https://doi.org/10.1524/ract.1989.46.4.185
    19. J.I. Kim, R. Klenze, H. Wimmer, W. Runde, and W. Hauser, "A Study of the Carbonate Complexation of CmIII and EuIII by Time-resolved Laser Fluorescence Spectroscopy", J. Alloys. Compd., 213-214, 333-340 (1994).https://doi.org/10.1016/0925-8388(94)90925-3
    20. Th. Fanghanel, Η.Τ. Weger, Th. Konnecke, V. Neck, P. Paviet-Hartmann, E. Steinle, and J.I. Kim, "Thermodynamics of Cm(III) in Concentrated Electrolyte Solutions. Carbonate Complexation at Constant Ionic Strength (1 m NaCl)", Radiochim. Acta, 82(s1), 47-53 (1998).https://doi.org/10.1524/ract.1998.82.special-issue.47
    21. Th. Fanghanel, Th. Konnecke, H. Weger, P. Paviet-Hartmann, V. Neck, and J.I. Kim, "Thermodynamics of Cm(III) in Concentrated Salt Solutions: Carbonate Complexation in NaCl Solution at 25℃", J. Solution Chem., 28(4), 447-462 (1999).https://doi.org/10.1023/A:1022664013648
    22. T. Vercouter, P. Vitorge, N. Trigoulet, E. Giffaut, and C. Moulin, "Eu(CO3)33- and the Limiting Carbonate Complexes of Other M3+ f-elements in Aqueous Solutions: A Solubility and TRLFS Study", New J. Chem., 29(4), 544-553 (2005).https://doi.org/10.1039/b413002b
    23. V. Philippini, T. Vercouter, and P. Vitorge, "Evidence of Different Stoichiometries for the Limiting Carbonate Complexes Across the Lanthanide(III) Series", J. Solution Chem., 39(6), 747-769 (2010).https://doi.org/10.1007/s10953-010-9539-4
    24. H.K. Kim, H.R. Cho, E.C. Jung, and W. Cha, "Radioanalytical and Spectroscopic Characterizations of Hydroxo- and Oxalato-Am(III) Complexes", J. Nucl. Fuel Cycle Waste Technol., 16(4), 397-410 (2018).https://doi.org/10.7733/jnfcwt.2018.16.4.397
    25. T.K. Keenan, "Americium and Curium", J. Chem. Educ., 36(1), 27-31 (1959).https://doi.org/10.1021/ed036p27
    26. R. Klenze, J.I. Kim, and H. Wimmer, "Speciation of Aquatic Actinide Ions by Pulsed Laser Spectroscopy", Radiochim. Acta, 52-53, 97-103 (1991).https://doi.org/10.1524/ract.1991.5253.1.97
    27. H.K. Kim, K. Jeong, H.R. Cho, E.C. Jung, K. Kwak, and W. Cha, "Spectroscopic Speciation of Aqueous Am(III)-Oxalate Complexes", Dalton Trans., 48(27), 10023-10032 (2019).https://doi.org/10.1039/c9dt01087d
    28. H.K. Kim, K. Jeong, H.R. Cho, K. Kwak, E.C. Jung, and W. Cha, "Study of Aqueous Am(III)-Aliphatic Dicarboxylate Complexes: Coordination Mode-Dependent Optical Property and Stability Changes", Inorg. Chem., 59(19), 13912-13922 (2020).https://doi.org/10.1021/acs.inorgchem.0c01538
    29. W. Runde, C. Van Pelt, and P.G. Allen, "Spectroscopic Characterization of Trivalent f-element (Eu, Am) Solid Carbonates", J. Alloys Compd., 303-304, 182-190 (2000).https://doi.org/10.1016/S0925-8388(00)00665-4
    30. S. Cho, H.K. Kim, T.H. Kim, W. Cha, and H.R. Cho, "Thermodynamic Studies on the Hydrolysis of Trivalent Plutonium and Solubility of Pu(OH)3(am)", Inorg. Chem., 61(32), 12643-12651 (2022).https://doi.org/10.1021/acs.inorgchem.2c01590
    31. N. Jordan, M. Demnitz, H. Losch, S. Starke, V. Brendler, and N. Huittinen, "Complexation of Trivalent Lanthanides (Eu) and Actinides (Cm) With Aqueous Phosphates at Elevated Temperatures", Inorg. Chem., 57(12), 7015-7024 (2018).https://doi.org/10.1021/acs.inorgchem.8b00647
    32. E.C. Jung, H.R. Cho, M.H. Baik, H. Kim, and W. Cha, "Time-resolved Laser Fluorescence Spectroscopy of UO2(CO3)34-", Dalton Trans., 44(43), 18831-18838 (2015).https://doi.org/10.1039/C5DT02873F
    33. W.D. Horrocks and D.R. Sudnick, "Lanthanide Ion Probes of Structure in Biology. Laser-induced Luminescence Decay Constants Provide a Direct Measure of the Number of Metal-coordinated Water Molecules", J. Am. Chem. Soc., 101(2), 334-340 (1979).https://doi.org/10.1021/ja00496a010
    34. T. Kimura and Y. Kato, "Luminescence Study on Determination of the Inner-Sphere Hydration Number of Am(III) and Nd(III)", J. Alloys Compd., 271-273, 867-871 (1998).https://doi.org/10.1016/S0925-8388(98)00236-9
    35. C. Priest, Z. Tian, and D. Jiang, "First-Principles Molecular Dynamics Simulation of the Ca2UO2(CO3)3 Complex in Water", Dalton Trans., 45(24), 9812-9819 (2016).https://doi.org/10.1039/c5dt04576b
    Spectroscopic Characterization of Aqueous and Colloidal Am(III)-CO3 Complexes for Monitoring Species Evolution 
				-Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) (2024)

    References

    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Tyson Zemlak

    Last Updated:

    Views: 5794

    Rating: 4.2 / 5 (43 voted)

    Reviews: 82% of readers found this page helpful

    Author information

    Name: Tyson Zemlak

    Birthday: 1992-03-17

    Address: Apt. 662 96191 Quigley Dam, Kubview, MA 42013

    Phone: +441678032891

    Job: Community-Services Orchestrator

    Hobby: Coffee roasting, Calligraphy, Metalworking, Fashion, Vehicle restoration, Shopping, Photography

    Introduction: My name is Tyson Zemlak, I am a excited, light, sparkling, super, open, fair, magnificent person who loves writing and wants to share my knowledge and understanding with you.